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Abstract: In this paper we have developed a block cipher, wherein the size of the 
key matrix is 384 bits and the size of the plain text is as large as we choose. The 
permutation, the interlacing and the iteration introduced in this analysis are found 
to cause diffusion and confusion efficiently. Hence, the strength of the cipher proves 
to be remarkable. 
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1. Introduction 

The classical Hill cipher [1, 2], is the first cipher, which has demonstrated the 
application of algebraic transformations in the area of cryptology. It is also the first 
block cipher developed in the literature of cryptography. Lester Hill’s cipher proved 
to be unsecure against the known plain text attacks [3]. Though Hill introduced his 
algorithm in 1929, not much work was reported till the last decade. In the last ten 
years, several researchers have focused their attention on the classical Hill cipher 
and proposed many modifications [4-27] to make it stronger and resistant to various 
cryptanalytic attacks.  Some were successful and some were not. One of the most 
significant aspects of Hill cipher is the ability of the cipher to dissipate the 
statistical characteristics of the plain text, and exhibit a very good diffusion 
property. 

In this paper our objective is to offer a modification of Hill cipher by 
introducing a key dependent permutation, interlacing at binary bit level to the plain 
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text in an iterative manner. These additional operations that we introduced will not 
allow a direct relationship to be established between the plain text and the cipher 
text, as it can be done in the case of the classical Hill cipher. Since Hill cipher’s 
primary operation is a modular matrix multiplication, the plain text is arranged in 
the form of a matrix of size n×m, such that n is equivalent to the number of columns 
of the key matrix, and m can be as long as we choose. Thus, if we have a square 
matrix K, of size n×n, and a plain text matrix of size n×m, matrix multiplication can 
be accomplished. This also gives us the flexibility of taking the entire plain text as a 
single block. Thus, theoretically, there will be no limit on the size of the plain text 
block that can be encrypted as a single unit. 

In this paper we have taken 128 ASCII characters as the set of plain text 
characters to be encrypted. The elements of the key matrix are also in the range 
from 0 to 127. We take mod 128, instead of mod 26, as it was done in the case of 
the classical Hill cipher. 

In Section 2 of this paper, we introduce the development of the cipher.  In 
Section 3 we present the algorithms for encryption and decryption. Then in  
Section 4 we illustrate the cipher with a couple of examples. Subsequently we 
discuss the crypt analysis and avalanche effect in Sections 5 and 6. Finally, we 
present the computations and conclusions in Section 7. 

2. Development of the cipher 

Consider a plain text. When using the ASCII code, we write the plain text in the 
form of a matrix P = [Pij],  i = 1, …, n,   j = 1, …, m,  in a column wise manner (pad 
if needed). 

Let K=[Kij], i = 1, …, n,   j = 1, …, n,  be the key matrix. The elements in the 
key matrix are between 1 and n2 in some permuted order. 

Let C=[Cij] represents the cipher text corresponding to the plain text P.  As in 
Hill cipher, the relations for encryption and decryption can be written as 
(1)  C=KPmod128  
and 
(2)  P=K

-1
Cmod128.  

where K
-1

 is the modular arithmetic inverse of K. 
Let us now introduce the process of permutation and interlacing.  On writing 

each element of the matrix [Pij] in terms of binary bits, we have 
[Pij]=[ j

ilb ], i = 1, …, n,   j = 1, …, m,   l=1, …, 7. 
Thus, each column of [Pij] is represented as a matrix of size n×7, and hence we 

have m such matrices. Let us now take 7n numbers (ranging from 1 to 7n), in the 
order in which they appear in the key matrix and form a subkey. 

We now focus our attention on the matrix corresponding to the first column of 
[Pij] (the size of this matrix is n×7). The elements of this are permuted by using the 
subkey (of size 7n) above mentioned. Then, the aforementioned procedure is 
applied for the matrices corresponding to all other columns of [Pij]. 
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Thus we get a new matrix, which includes all the permuted matrices, of size 
n×7m and denoted by [eij]. This [eij] is divided into two equal halves, wherein each 
half contains 7m/2 columns, if m is an even number. Otherwise, it will be divided 
into two parts, wherein the left part contains (7m+1)/2 columns and the right one is 
having (7m – 1)/2 columns. 

Then we place the first column of the right half next to the first column of the 
left half.  The second column of the right half next to the second column of the left 
half, and so on, till we exhaust all the columns of the right half. This completes the 
process of interlacing. 

The reverse processes of interlacing and permutation are denoted as 
decomposition and inverse permutation respectively. These two are utilized in 
decryption. 

In this cipher, we adopt an iterative procedure, which consists of 16 rounds. The 
procedures of encryption and decryption are depicted in the diagram shown  
in Fig. 1. 

3. Algorithms 

The algorithms describing encryption, decryption, modular arithmetic inverse, 
permutation, interlace, inverse permutation and decomposition, are given below. 

3.1. Algorithm for encryption 
1. read n, N, K, P; 
2. P0 = P; 
3. P1 = KP0mod128; 
4. for i=2 to N{ 
 Permute(); 
 interlace(); 
 Pi = KPi-1mod128; 
    } 
5. C = PN; 
6. write C; 

3.2. Algorithm for decryption 
1. read n, N, K, C; 
2. find modinverse (K); 
3. PN = C; 
4. for i=N to 2{ 
 Pi–1 = K-1Pimod128; 
 decompose(); 
 invpermute(); 
    } 
5. P0 = K–1P1mod128; 
6. P=P0; 
7. write P; 
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3.3. Algorithm for modinverse 
1. read n,K; 
2. find Kij,∆;  
/* Kij are the cofactors of the elements of K, and ∆ is the determinant of K */ 
3. find d such that (d∆)mod128=1; 
/* d is the multiplicative inverse of ∆ */ 
4. K–1=(Kjid)mod128; 

3.4. Algorithm for permute 
1. convert Pi into binary bits; 
2. construct [eij], i=1 to n, j=1 to 7m; 
3. generate subkey; 
4. for l=0 to (m–1){ 
k=1; 

for i=1 to n{ 
  for j=(7l+1) to (7l+7){ 
temp[subkey[k]]=eij 
 k++; 

  } 
     } 

k=1; 
for i=1 to n{ 
 for j=(7l+1) to (7l+7){ 
  eij=temp[k]; 
  k++; 
 } 
} 

   } 

3.5. Algorithm for invpermute 
1. convert Pi into binarybits; 
2. construct [eij], i=1 to 8, j=1 to 14; 
3. generate subkey; 
4. for l=0 to (m–1){ 
 k=1; 

for i=1 to n{ 
  for j=(7l+1) to (7l+7){ 
temp[k]=eij 
k++; 
  } 

     } 
k=1; 
for i=1 to n{ 
 for j=(7l+1) to (7l+7){ 

eij=temp[subkey[k]]; 



 54

k++; 
 } 
} 

} 

3.6 Algorithm for interlace 
1. l=1; 
2. convert P into binary bits; 
3. for  i=1 to n{ 
for  j=1 to 7{ 
   temp(l) = bij; 
   temp(l+1) = dij; 
   l=l+2; 
  } 
}  
4. l=1; 
5. for i=1 to n{ 
  for j=1 to 7{ 
   bij=temp(l); 
   dij=temp(l+n*7); 
   l=l+1 ; 
  } 
}  

3.7. Algorithm for decomposition 
1. l=1; 
2. convert P into binary bits; 
3. for i = 1 to n{ 
  for  j=1 to 7{ 
   temp(l)=bij; 
   temp(l+n*7)=dij; 
l = l + 1 ; 
  } 
} 
4. l=1; 
5. for i = 1 to n{ 
  for j = 1 to 7{ 
   bij = temp(l); 
   dij = temp(l+1); 
   l = l + 2 ; 
  } 
}  
6. convert binary bits to decimal numbers. 
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P0 = P

P1=KP0mod128

 
for i  =2 to N 

Permute()
interlace() 

Pi=KPi-1mod128 

C = PN

write C

Read P, K, N, n Read C, K, N, n

Find K-1

 
for i = N to 2 

Pi-1=K-1Pimod128
decompose() 
Invpermute() 

PN=C

write P

P0=K-1P1mod128

P=P0

b) Decryption a) Encryption 
 

Fig. 1. Schematic diagram of the cipher 

 
In this analysis, N denotes the number of iterations and it is taken as 16. 
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4. Illustration of the cipher 

Let us consider the plain text given below: 
(3)  “I am quite sure to assert that all the terrorists entered in to the jungle. Let 
us burn the forest without any lapse of time. Peace cannot be restored unless 
we do this immediately. Wish you best of luck”.  

Let us focus our attention on the first sixty four characters of the above plain 
text given by 
(4)  “I am quite sure to assert that all the terrorists entered in tob ”. 

By using ASCII code, these characters can be represented as a matrix of size 
8×8 and it assumes the form    

(5) P0=

321111163211010532100
10111410111611010132115
116115105114111114114101
1163210110411632108108
97321169710411632116
1141011151159732111116
3210111411711532101116
10511711332109973273

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 

The key matrix K is given by     

(6) K=

2870345023114
455391910444036
211554352133756
252226163162057
61275924238947
5153248304641           8
1158356029631245
4317184933246253

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 

On using the key matrix K and the plain text P, we apply (1) and obtain the 
modified P, denoted by P1, as    

(7) P1=

57321221209811722115
3311918810365948
117619336661241251
3407597871045061
40035107811056979
91114494133369587
7826114551283110
3152376353697862

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 
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By applying the process of permutation, described in Section 2, we get the 
transformed P1 as 

(8) P1=

122194296946117114
47213550114483115
90669112497221102
7150253158883666
808812088301126763
9210210131681166229
4440972112720112119
24123357371237159

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 

On applying the interlacing process (see Section 2) on P1, we obtain 

(9) P1= (

70434519403964118
1029281247410610655
939217221129852124
471346115761119         7
7054497122939612
103381208011245986
295347998189085
9718936643727531

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 

After carrying out all the sixteen rounds, we get the cipher text in the form 

(10) C=

11511712135691159484
298564117811092694
254108231412615121
107648726524549
7490681062710910773
4897278034986076
731012511347328358
824462544811315110

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 

The modular arithmetic inverse of K, denoted by K-1, is given by 

(11) K–1=

11381884232176171
12249757322574164
56691210160545061
3297998011712363
191041029427529794
116370181181163957
8110621592176041
225481173534027

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 
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By applying K-1 on the cipher text C, from (2) we get 

(12) PN= (

651612719818100
492757636073426
121310147551062529
221072229382875125
58909010699270113
161089911484843650
441029311651542224
9438101326123126100

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 

On applying the decomposition algorithm (see Sections 2 and 3), the 
transformed PN assumes the form  

(13) PN=

9495311732404462
341231183826287357
52124100891036780101
82799432861141927
5643816105827823
1193734105695853123
25741482510511236
853811678533310787

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

. 

We now apply the inverse permutation algorithm described in Section 3 on the 
PN above obtained and get the new PN as 

(14) PN=

5918554811159460
63110126775112091
7414104077710890
396692294954116
795024981518315
33311077141965254
0104445777917479
21218175521811683

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

. 

After carrying out all the sixteen rounds, we get the deciphered text in the form 

(15) P= (

321111163211010532100
10111410111611010132115
116115105114111114114101
1163210110411632108108
97321169710411632116
1141011151159732111116
3210111411711532101116
10511711332109973273

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

 

that is the same as the plain text given in (5). 
Let us now consider another example, wherein we have taken the complete 

plain text given by (3). This plain text is containing 207 characters. To represent 
this in the form of a matrix consisting of n rows and m columns, where n = 8 and m 
is having an appropriate value, depending on the number of characters, we add one 
more character ($ is added here) to the plain text. With this padding, the plain text is 
represented in the form of ASCII codes.  For convenience of space, we present the 
transpose of the plaintext matrix as shown in (16):  
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(16)   

73 32 97 109 32 113 117 105
116 101 32 115 117 114 101 32
116 111 32 97 115 115 101 114
116 32 116 104 97 116 32 97
108 108 32 116 104 101 32 116
101 114 114 111 114 105 115 116
115 32 101 110 116 101 114 101
100 32 105 110 32 116 111 32
116 104 101 32 106 117 110 103
108 101 46 32 32 76 101 116
32 117 115 32 98 117 114 110
32 116 104 101 32 102 111 114
101 115 116 32 119 105 116 104
111 117 116 32 97 110 121 32
108 97 112 115 101 32 111 102
32 116 105 109 101 46 32 32
80 101 97 99 101 32 99 97
110 110 111 116 32 98 101 32
114 101 115 116 111 114 101 100
32 117 110 108 101 115 115 32
119 101 32 100 111 32 116 104
105 115 32 105 109 109 101 100
105 97 116 101 108 121 46 32
32 87 105 115 104 32 121 111
117 32 98 101 115 116 32 111
102 32 108 117 99 107 46 36

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦  

Here we perform interlacing and permutation as described in Section 2. Then, 
on adopting the process of encryption, we get the cipher text in hexadecimal 
notation, as shown below: 
(17)   F45CE2BBB263629C83A3DF35B015BB4574DD1A8C45A5CFD0C93D 
6107DE4C2025E6D342505CD0206BC8FC8E55134C2F48DD61EC68739A4F0C
60CA5886728398191B858BB5E47B241D3A4E76D4FC0CFEBCAA749F72B672
D8EE12922F3276FD80FAFBB80ADA008D154E92C5942BAB7989A4C19CF0D
FB37F761A6B9EB5DB2B4E89034162B3CF4A8410DD3A00435. 

On using the process of decryption, we readily find that this cipher text can be 
brought into the form of the original plain text. 
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5. Cryptanalysis 

Let us first consider the brute force attack. In the illustration of the cipher, we have 
taken an 8x8 matrix.  Thus, the number of elements in the key matrix is 64. We take 
the numbers from 1 to 64 in a permuted order. There are 64! such permutations. 
One needs to check all these permutations to arrive at the correct key matrix.  On 
the other hand, some researchers have estimated the key space of the Hill cipher 
[28, 29]. As per that, there will be 157, 248 possible invertible matrices for a 2×2 
matrix for which a modular arithmetic (mod 26) exists. For a 3×3 matrix, the 
number is 1,634,038,189,056. A 4×4 matrix will have 
12,303,585,972,327,392,870,400 possible invertible matrices.  As we notice, the 
number grows by many orders with the increase in the order of the matrix.  In our 
present cipher, we have taken the key matrix as 8×8 and a mod 128 is considered.  
With this, the exhaustive key space search will not be practical. 

We now take the plain text attack. The Hill cipher exhibits vulnerability against 
the known plain text attack, as the cipher causes a direct relationship, such as 
X=KY mod 128. 

If we can find Y-1, the modular arithmetic inverse for Y, we can find K by 
applying 

XY-1 mod 128 = KYY-1 mod 128 = K. 
But in the present cipher, the relationship between the plain text and cipher text 

is not as simple as the one in the classical Hill cipher. The key dependent 
permutation and the interlacing at each step of the iteration prevent such direct 
relationship from being established, making it difficult to break the cipher using the 
known plain text attack. In the same aspect we say that no special choice of the 
plain text or the cipher text will help the crypt analyst in breaking the cipher using 
the chosen plain text/chosen cipher text attack. 

6. Avalanche effect 

Avalanche effect is a necessary condition for all modern block ciphers. It 
demonstrates the diffusion property of the block cipher.  We have tested our cipher 
for a large number of plain texts and verified the avalanche effect. We are 
illustrating one case as an example. 

By applying the encryption algorithm to the plain text given in (4), and using 
the key matrix K, the corresponding cipher text can be obtained as 
(18)   11011100001111111000101100000111010101001101000000101111100110 
0011110011000100100010100100111010111101101001101100010010110110000
0100011010011110010001111111111000011101011110001101011011011010001
1010100101111011100111000101011011001111100101100101001011100010011
0011100101100100110100000011011110000101100001101010100010010110101
0010100011010101011110000001101011001011111011000110110000001011101
011000000101010100111010100011111100111101011110011. 
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We now change the third character of the plaintext given in (4) from a to c.  
Then the modified plain text will be of the form 
(19)   “I am quite sure to assert that all the terrorists entered in tob”. 

It may be noted that the plain texts given in (4) and (19) differ by exactly one 
bit. The cipher text corresponding to the plain text given in (19) is 
(20)   10011101100010100101111110110111000101000100110100110100100001 
1101000010010011011010011001110001101010110111010111101100010011101
1100000010100000010000000101000100000000100110000100010110000100101
1000001001100111000100111011101100110010110001001010100110000110010
0011000100011111100100010100011110000000001101101010000110010111100
1011111010110001000100011011010001110101011101001110111101111011001
011010011100001110001101100110100101010001100001001.   

We readily notice that the cipher texts given in (18) and (20) differ by 224 bits 
which is substantial. 

Let us now change the key matrix element K25 form from 60 to 62. With this 
change, the original key and the modified key differ by one bit. By applying the 
modified key, the cipher text corresponding to the plain text given in (4) is obtained 
as 
(21)   00001101111111101110100000011110001110100001110100101100010100 
1000110110001110011110011000101100100001101100010101011101000010110
1000000001001110101001110010101011011001111110010001111001101100010
0111000111101100011100101110100010011101001110110010100100010001001
1111111010001110101110101111100011010110111000100101111110110111011
1001011001111101111101100110100101010101001010101000010110000111110
001100000001000011000111000001000101110100001010010.  

The cipher texts given in (18) and (21) differ by 234 bits, which is also very 
significant. 

7. Computations and conclusions 

In this paper we have extended the analysis of the modified Hill cipher by 
considering a plain text of any size. In this analysis we have illustrated the cipher by 
considering two cases. In the first one, the plain text is an 8×8 matrix and in the 
second one, it is of size 8×26. 

The algorithms designed in this analysis are implemented in C language. 
As the key size and the plain text size are significantly large, and as the iteration 
together with the permutation and the interlacing are effectively leading to diffusion 
and confusion, the cipher is resistant to crypt analytic attacks. 

In the case of a complete plain text, which is taken in the form of a single block, 
the time required for encryption is 8.5×10-3 s and the time required for decryption is 
13×10-3 s. These results indicate that the algorithm is quite efficient and it can be 
applied in any context for transmission of information. This analysis can be 
extended to the case, where we take multiple key matrices so that the process is 
further strengthened. 



 62

R e f e r e n c e s 

1. H i l l, L. S. Cryptography in an Algebraic Alphabet. – American Mathematical Monthly, Vol. 36, 
1929, No 6, 306-312. 

2. H i l l, L. S. Concerning Certain Linear Transformation Apparatus of Cryptography. – American 
Mathematical Monthly, Vol. 38, 1931, No 3, 135-154. 

3. S t a l l i n g s, W. Cryptography and Network Security Principles and Practices. 3rd Edition. New 
Jersey, Prentice Hall, 1999.  

4. S a s t r y, V. U. K.,  N. R a v i  S h a n k a r. Modified Hill Cipher with Interlacing and Iteration. – 
Journal of Computer Science, Science Publications, Vol. 3, 2007, No 11, 854-859. 

5. S a s t r y, V. U. K., N. R a v i  S h a n k a r. Modified Hill Cipher for a Large Block of Plaintext 
with Interlacing and Iteration. – Journal of Computer Science, Science Publications, Vol. 4, 
2008, No 1, 15-20. 

6. S a s t r y, V. U. K., N. R a v i S h a n k a r, S. D u r g a B h a v a n i. A Modified Hill Cipher 
Involving Interweaving and Iteration. – International Journal of Network Security, Vol. 11, 
2010, No 1, 11-16. 

7. S a s t r y, V. U. K., N. R a v i  S h a n k a r, S. D u r g a  B h a v a n i. A Large Block Cipher 
Involving Interweaving and Iteration. – In: Proceedings of the International Conference on 
Advances and Emerging Trends in Computing Technologies (ICAET’10), 21-24 June 2010, 
Chennai, 328-333. 

8. S a s t r y, V. U. K., N. R a v i  S h a n k a r, S. D u r g a  B h a v a n i. A Modified Playfair Cipher 
Involving Interweaving and Iteration. – International Journal of Computer Theory and 
Engineering, Vol. 1, December 2009, No 5, 594-598. 

9. S a s t r y, V. U. K., N. R a v i  S h a n k a r, S. D u r g a  B h a v a n i. A Modified Playfair Cipher for 
a Large Block of Plaintext. – International Journal of Computer Theory and Engineering, 
Vol. 1, 2009, No 5, 590-594. 

10. S a s t r y, V. U. K., N. R a v i  S h a n k a r , S. D u r g a  B h a v a n i. A Generalized Playfair 
Cipher Involving Intertwining, Interweaving and Iteration. – International Journal of 
Networks and Mobile Technology, Vol. 1, 2010, No 2, 45-53. 

11. S a s t r y, V. U. K., N. R a v i  S h a n k a r, S. D u r g a  B h a v a n i. A Blending of A 
Generalized Playfair Cipher and A Modified Hill Cipher. – International Journal of Networks 
and Mobile Technologies, Vol. 2, 2011, No 1, 35-43.  

12. S a s t r y, V. U. K., V. J a n a k i. On the Modular Arithmetic Inverse in the Cryptology of Hill 
Cipher. – In: Proceedings of North American Technology and Business Conference, 
September 2005, Montreal, Canada. 

13. L e v i n e, J., R. E. Hartwig. Applications of the Drazin Inverse to the Hill Cryptographic System. 
Part I. – Cryptologia, Vol. 4, 1980, No 2, 71-85. 

14. L e v i n e, J., R. E. H a r t w i g. Applications of the Drazin Inverse to the Hill Cryptographic 
System. Part II. – Cryptologia, Vol. 4, 1980, No 3, 150-168. 

15. L e v i n e, J., R. E. H a r t w i g. Applications of the Drazin Inverse to the Hill Cryptographic 
System. Part III. – Cryptologia, Vol. 5, 1981, No 2, 67-77.  

16. L e v i n e, J., R. E. H a r t w i g. Applications of the Drazin Inverse to the Hill Cryptographic 
System. Part IV. – Cryptologia, Vol. 5, 1981, No 4, 213-228. 

17. M a k a r, B. H. Application of a Certain Class of Infinite Matrices to the Hill Cryptographic 
System. – Cryptologia, Vol. 7, 1983, No 1, 63-78. 

18. L e v i n e, J., R. C h a n d l e r. The Hill Cryptographic System with Unknown Cipher Alphabet, 
But Known Plaintext. – Cryptologia, Vol. 13, 1989, No 1, 1-28. 

19. K i e l e, W. A. A Tensor-Theoretic Enhancement to the Hill Cipher System. – Cryptologia,  
Vol. 14, 1990, No 3, 225-233. 

20. T h i l a k a, B., K. R a j a l a k s h m i. An Extension of Hill Cipher Using Generalized Inverses and 
mth Residue modulo n. – Cryptologia, Vol. 29, 2005, No 4, 267-276. 

21. S a e e d n i a, S. How to Make the Hill Cipher Secure. – Cryptologia, Vol. 24, 2000, No 4, 353-
360. 



 63

22. Y e h, Y. S., T. C. W u, C. C. C h a n g, W. C. Y a n g. A New Cryptosystem Using Matrix 
Transformation. – In: Proceedings of the 25th IEEE International Carnahan Conference on 
Security Technology, 1991, 131-138. 

23. M a h m o u d, A. Y., A. G. C h e f r a n o v. Hill Cipher Modification Based on Eigenvalues HCM-
EE. – In: Proceedings of the Second International Conference on Security of Information and 
Networks (SIN2009),  Gazimagusa (TRNC) North Cyprus, A. Elci, M. Orgun, A. Chefranov, 
(Eds) ACM, New York, USA, 2009, 164-167. 

24. M a h m o u d, A. Y., A. G. C h e f r a n o v. Hill Cipher Modification Based on Pseudo-Random 
Eigenvalues. – Fourth coming paper, to appear in Applied Mathematics & Information 
Sciences. 

25. L i n, C. H., C. Y. L e e, C. Y. L e e. Comments on Saeednia's Improved Scheme for the Hill 
Cipher. – Journal of the Chinese Institute of Engineers, Vol. 27, 2004, No 5, 743-746. 

26. T o o r a n i, M., A. F a l a h a t i. A Secure Cryptosystem Based on Affine Transformation. – 
Journal of Security and Communication Networks, Vol. 4, 2011, No 2, 207-215. 

27. T o o r a n i, M., A. F a l a h a t i. A Secure Variant of the Hill Cipher. – In: Proceedings of the 14th 
IEEE Symposium on Computers and Communications (ISCC’09), July 2009, 313-316. 

28. O v e r b e y, J., W. T r a v e s, J. W o j d y l o. On the Keyspace of the Hill Cipher. – Cryptologia, 
Vol. 29, 2005, No 1, 59-72. 

29. B a u e r, C., K. M i l l w a r d. Cracking Matrix Encryption Row by Row. – Cryptologia, Vol. 31, 
2007, 76-83. 


